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Abstract -Fluid bearings play active roles in precision devices, supporting large loads in machinery thereby extending the 
lifetime of components by reducing wear and tear. Many potential industrial applications of spherical actuators require fine 
motion control of the output shaft. A non-contact bearing design for such spherical devices offers an interesting method of 
achieving precision positioning of the output shaft and yet has the potential to enhance theii performance in more advanced 
applications. This paper presents an analytical investigation on the design, modeling of a practical air bearing system for 
ball-joint-like actuators. Specifically, it discussed design issues and kinematics, and characterizes the air bearing forces of a 
variable reluctance (VR) spherical actuator. The air bearing system introduces three linear degrees of freedom (DOF) 
motion to the rotor dynamics and the paper addresses a method of regulating the translations in order to improve the 
orientation manipulations. The performance of the design is evaluated through improvements in the torque output and 
dynamic performance of the orientation motion. It is expected that this research will be a basis for designing and evaluating 
an improved VR spherical motor with enhanced torque capability by eliminating mechanical hction. 

1. INTRODUCTION 
Many applications in the industry require the use of 

unconventional actuators to achieve flexibility and 
precision. A unique example is a novel electromagnetic 
variable reluctance (VR) spherical actuator developed at 
Georgia Tech. [l]. The motor offers attractive features of 
combining three DOF motion (roll, pitch and yaw) in one 
joint, isotropic properties, large range of motion, no 
singularities within the workspace and simplicity in 
structure. These flexible design features make the 
motor suitable for a wide range of applications such 
as water-jet cutting, laser cutting, painting, welding, 
material handling, coordinate measurement etc., 
where smooth uniform manipulation of the end- 
effector is required. 

The ball-joint-like VR actuator consists of four main 
subassemblies: 1) the spherical stator, 2) the spherical 
rotor, 3) the transfer bearings and 4) the orientation 
measurement system. The spherical rotor, which has 
orthogonal iron-core poles, is supported inside the stator by 
transfer bearings. The electromagnetic stator poles are at 
the apices of a regular polyhedron forming a shell round 
the rotor. By sequential current-excitation of the stator 
poles, the reluctance of the air gaps between the bearings 
and the rotor surface is varied and the rotor responds by re- 
aligning its poles. Thus, the output shaft could be moved to 
desired position in Cartesian space. In this research, we are 
interested to investigate the use of thin film air bearings to 
support the rotor. Unlike magnetic bearing that is 
inherently unstable, the air bearing is essentially a regulator 
that tends to maintain the rotor at its equilibrium position. 

Over the years, research has been directed toward the 
optimization of the motor torque by controlling the 
orientation motion. Recently, efforts to reduce the 

discrepancies between the actual and predicted torque 
outputs have suggested that friction, accountable by 
the transfer bearings of the motor, is significant. The 
“reaction-free” magnetic levitation control strategy 
proposed by Zhou [2] and aimed at relaxing frictional 
forces was an advancement but not adequate for 
reasons of practicality and instability without 
sophisticated feedback control design, for many 
applications of the VR motor. As advances in 
technology continue to demand more accurate and high 
precision spherical devices, opportunities still exist to 
utilize the unique attractive features of the VR spherical 
motor to meet these challenges. 

This paper discusses a practical means to 
effectively overcome static and dynamic friction in 
spherical actuators and aimed at improving the output 
torque and broadening the tasks they can undertake. 
We explore air bearing over fluid bearing, magnetic 
levitation, and the Meissner effect because it is clean, 
has a cooling effect on interacting components and 
does not interfere with the actuator electromagnetic 
system. Researchers [4] [5] [8] have investigated air 
bearing designs and characteristics. Others [9] [ 101 
have contributed to improving stability of fixed 
orifice or inherent restrictor bearings. But these 
works have concentrated on single bearing, single 
axis bearing devices. In this paper we are interested 
in the control of multi-DOF spherical actuators using 
strategically placed sets of air-bearings. 

The rest of the paper is organized as follows: 
First we present the dynamic characteristics of a 
simple air bearing system, along with the flow- 
pressure characteristics of the fluid flow regimes. We 
then present the design and the kinematics of an air 
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bearing system for a spherical actuator. Next, the 
system dynamics of the three degrees-of-freedom 
(DOF) structure is presented followed by the 
modeling of the actuating forces. The simulation 
studies three combinations of the actuating forces and 
is followed by a conclusion. 

2. DYNAMIC CHARACTERIZATICS OF AN AIR 
BEARING 
Figure 1 shows a simple, pocketed, orifice 

compensated bearing. The air bearing is characterized 
by three distinct flow regions; namely the restrictor, 
air pocket, and the annulus. Air enters the bearing 
from a pressure source, passes through the restrictor, 
flows through the annulus 
atmosphere. 

and then exhausts to the 

111 1 J 
h b 
/// /// //////////// ///////&///// 

Rotor 
Figure 1 Orifice Compensated Air Bearing 

2.1 Governing Equations 
Since there is no contact between the surfaces, and 

fnctional effect of air is negligible, the equation of motion 
for the rotor along the direction of the resultant actuating 
force is 

m,i = 2 n [ l p p r d r - l p r d r ]  (1) 

where m, is the mass of the rotor; ppand p are the 
pressure in the pocket and that along the r direction 
respectively; h, Rpand R, are the geometrical 
parameters defined in Figure 1. As shown in Equation (I), 
the rotor dynamics depend on the pressure-flow 
relationship in the flow regions. 

The time rate of change of the air stored in the gap is 
the difference between the inflow to the orifice and the 
outflow through the annulus region, or 

where m is the mass of the air stored between the bearing 
surfaces; and q R  and qo are the mass flow rates through 
the orifice restriction and the exhaust through the annulus, 
respectively. 

The flow through an orifice has been modeled by 
several authors [4]. A particular form known as 
Fliegner’s approximation [5] has been chosen due to 
its convenience for analytical and computational 
purposes. 

1 
r 

where q R ,  p,are the flow through the orifice 
restriction and the pressure at the inlet of the orifice; 
do is the orifice diameter; and R, T, and y are gas 
constant, temperature and the ratio of specific heat 
for air respectively. 

Since the air gap is small as compared to the rotor 
radius, and the rotor surface velocity is much smaller 
than the fluid velocity, the flow through the annulus 
is essentially pressure-induced, laminar and is 
characterized by 

(4) 

where ,U 

denotes the atmospheric pressure. 
is the absolute viscosity of the air; and p a  

The air stored between the bearing surfaces can be 
determined by integrating the product of the volume and 
the density of air: 

m = 27r f ( d p  + h)prdr + l h p  rdr] (5a) i:: RP 

or 

(5b) 
[hPp Aeq + dp ~ p d ;  + h ~ a  (dh’ - ~ e q  11 m =  

RT 

p is the density of the air; and d ,  is defined in Figure 1. 

Along with Equations (3), (4) and (5b), Equations (1) and 
(2) are the non-linear differential equations that describe 
the pocket pressure pp and the gap between the two bearing 
surfaces, h. 

2.2 Perturbation Model 
For a small gap h, we derive a perturbation model 

about an operating point by substituting the linear 
approximations of m. q R  and qo into Equation (2).  
Thus, we have 
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- - .., 
a5FP +a,h = ( - a l p p  +a2F,)-(a3Fp + a 4 h )  (6) 

where the notation "-" denotes the small deviations 
of the quantity of interest; 

and the subscript "e" denotes the quantity is 
evaluated at the equilibrium operating point. To 
obtain the dynamic equation in terms of h explicitly, 
we assume the linear pressure drop along the annulus 
and thus Equation (1) becomes -. 

mrh =AeqFp (7) 
By substituting the pocket pressure and its time 
derivative from Equation (7) into Equation (6). The 
resulting linear equation describing the rotor motion 
is given as ;+( a,;a3 )+( Aeqa, )+( Aeqa4 p=( ~ e q a 2  ) S 

(8) 
a5mr a5mr a5mr 

Alternatively, 

;p +( al;a3 $+( Aeqa, )+( ~ e q a 4  )=( ~ e - 4 ~ 2  ) S 
As shown in Equation (8) or (9), the air bearing is third 
order. For a constant supply pressure and with 
appropriately chosen geometrical parameters, the air 
bearing could be designed as a regulator so that the rotor 
tends to return to the equilibrium position regardless of 
electromagnetic forces or external disturbances. 

a5mr a5mr a5mr 

(9) 

3. BEARING DESIGN FOR SPHERICAL 

The distribution of bearings on the spherical rotor 
determines the support forces generated. To maintain the 
rotor in equilibrium at the stator center, the air 
bearings are designed to direct their forces at the 
vertices of polyhedrons towards the stator center. 
Thus, once the bearing locations are specified, the 
directions of the bearing forces are considered 
known. 

ACTUATOR 

3.1 Design Configuration 
Theoretically, the minimum number of simple 

point bearings required to achieve bi-directional 
position control of the spherical rotor in a three- 
dimensional space is four. To illustrate the minimum 
force requirement, consider three forces are directed 
radially toward the origin 0 of a fixed reference 
frame. The three points 

are on a plane defined by 

Since the points at which the forces act are coplanar, 
any disturbance in the orthogonal direction to this 
plane consisting of the line (c2 x q , )  will cause 
the rotor to lose its equilibrium since the actuating 
forces are only acting in the direction toward the 
rotor center. Thus, three point bearings are not 
adequate to control all three orthogonal translations 
of the rotor. A forth line of action must be applied 
against the plane containing the three points. A 
possible arrangement of minimum number of point 
bearings on a spherical surface is to locate them at the 
vertices of a regular tetrahedron on which the sphere 
is inscribed. A disadvantage of this configuration is 
that the four point bearings cannot be arranged in 
pairs for push-pull (regulation) control strategy. The 
arrangement of a minimum number of bearings is not 
necessarily attractive since four independent actuators 
are required. 

PI(xJ,z),  P~(x,Y.z),  Ps(x.Y,z) E E3 

- -  
n(P,P22P,P3). 

An alternative arrangement is to alternate the bearings 
and the stator poles on the limited rotor surface as 
complements at vertices of polyhedrons. The patterns 
include tetrahedron-tetrahedron, octahedron-hexahedron, 
icosahedron-dodecahedron patterns, which correspond to 
414, 618, 12/20 vertices respectively. Figure 2 shows one 
such example, where the apices of an octahedron in 
spherical coordinate system are given by 

CI = (1,0,0); 
c, = (1,7c(i-2)/2, ~ 1 2 ) ;  and (10) 
C ( j = ( l ,  0, n). 

where i = 2, 3 ,  4, 5 .  The vertices of the corresponding 
complementary hexahedron are at 
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ci = (1, K (i-l)/2+x/4, p) and 
cj = (1, K (j-4)/2-3~/4, K - v ) ) ,  (1 1) 

where i = 1, 2, 3, 4 and j = i+4; and p=54.74' as 
defined in Figure 2. 

Another attractive approach, however, is to 
design a compound unit so that pressurized air passes 
through the center of the electromagnetic pole 
enabling it to also serve as a bearing. The advantages 
of a compound unit are twofold: 
1) The air-jet will provide cooling effect to the 

electromagnetic pole coil windings. 
2) The design will optimize the stator surface by 

maximizing the size of each bearing, thereby 
enhancing load-bearing capacity. 

1 

Figure 2: Localized View of a Hexahedron (Cube) 

3.2 Kinematics 
Consider an arbitrary displacement of the rotor from 

the center of the stator as shown in Figure 3. For the 
purpose of design and control, it is of interest to 
determine both the forward and inverse kinematics. 
The forward kinematics determines the air gaps, hi, 
and A, between the stator and the rotor along the line 
of action of a given rotor displacement, Po, since the 
air gap directly governs the magnitude of the 
actuating forces. The inverse kinematics, on the other 
hand, defines the rotor position for a given set of air 
gaps and is essential for the dynamic simulation and 
analysis. Since direct sensing of the rotor 
displacement ( Fn ) is difficult, the inverse kinematics 
provides a practical means of computing the rotor 
position, as the air gaps measurements are more 
accessible in real-time control. 

The kinematic relationship between the air gap and Fo 
is described below. Assuming the homogenous and 
isotropic rotor, the centers of the rotor and stator are 
coincident at equilibrium. As shown in Figure 4, the 
base reference frame XYZ is defined as the center of 
the stator, 0, with the Z-axis pointing toward the 
opening for the stator. The coordinate system xyz is 
fixed at the center of the rotor, 0', with its z-axis 
along the rotor output shaft. The gap between the 
stator and rotor along a pair of forces, E. and Fj ,  can 
be determined with the aid of Figure 5 .  

P 

Bearing - 

Figure 3. Conceptual Rotor Displacement Geometry 

I i  

Figure 4. Coordinate System of Spherical Bearing 

\ 

Figure 5 Air Bearing Force Line of Action 

815 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 15:23 from IEEE Xplore.  Restrictions apply. 



The net force, Fi,j = Fi + R j ,  can be described by: 
- 
F. ' J  . = F .  ' J  .e. Id . (12) 

where ZiJ  is fixed for a given 'configuration. As 

shown graphically in Figure 5, the minimum air gap 
between the rotor is in the direction of 7, . Thus, the 
included angle between Fi,j and To is 

The forward kinematics determines the air gaps, h, ,  hi 
for a given rotor displacement. The gaps govern the 
magnitude of the actuating forces and are derived 
from Figure 5 as 

hi =r, - r: -r: sin2 Qi, + r, cos Qi, ($--- 
Since the triangles AOBA, and AO'BAj are similar, 

h.=rs- J { d y  r:-r:sin2Q. . -r,cosQi,j 

It is worth noting that hi is expressed as a function of 
and is geometrically related to hi as shown in 

Figure 3. Therefore, hi is computed from hi in actual 
implementation or vice versa. 

Since direct sensing of the rotor displacement 
( F,) is difficult, the inverse kinematics provides a 
practical means of computing the rotor position, as 
the air gaps measurements are more accessible in 
real-time control. Subtracting Equation (I4a) from 
Equation (14b) yields 

Two similar equations can be obtained from 
measuring gaps for two other pairs of forces. 

Let Zi,j ( i ,  j = I,II,III) be the directions of 3 gap 
measurements each of which can be decomposed into 
the stator fixed X, Y, Z components, then Equations 
(1 5 a H  15c) can be written in matrix form: 

[:I= 
- 1  

2 1  

4. THREE DEGREES-OF-FREEDOM @OF) 
DYNAMIC MODELS 
The 3-D rotor dynamics is of the form 

[m,]%=F, , ,+Fb (17) 
where F ,  and F b  are the resultant electromagnetic and 
air-bearing force vectors respectively. In this air 
bearing system control, the magnetic force is treated 
as an external disturbance. 

4.1 Energy Conversion 

principle of energy conservation: 
The three DOF dynamics can be derived using the 

Fb ( t  ). ?(t)  = E,f  (18) 

dmi air capacitance is defined as Ci =-; n is the 

number of air bearing units. the fluid power could be 
rewritten as 

dP pi 

n r  

The mechanical power could be written as 

k=l 

where xk  ( i=1,2,3)  are the linear velocity components 
of the rotor or 

Noting that the elements, dx, dy and dz, are 
independent of each other, the gradient of the total 
energy of the system gives the forces along the 
tangent lines, we have 

dEf 7 ( F b  . V)dt = FhXdn + FbYdy + Fhzdz (2 1) 

Fb = V E f  ( 2 2 )  

gradient of the system's energy along the stator fixed 
coordinate axes. 

In, Equation (19), the first and second terms account 
for fluid frictional dissipation in the orifice and in the 
annulus respectively. The third term accounts for the 
fluid energy stored within the air gap, which depends 
on the volume change (capacitor) and the pressure in 
the air gap. To serve as an efficient air-bearing, the 
third term must dominate, otherwise, the fluid energy 
will be dissipated as frictional heat. 
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4.2 Ideal Energy Transformation 
If the fluid frictional dissipation in the orifice and in 

the annulus are negligible, the system approaches the case 
of ideal energy transformation or 

From the definition of air capacitor and Equation 
(5bh 

and thus, 

Fb = -%gp; iJhi  (23) 
2RT i=l 

Equation (23) shows that the air bearing force is 
quadratic in ppi.  In addition, the force increases as 
the air gap decreases and thus, the gap tends to 
stabilize about a steady state operating point. 

5. SIMULATIONS 
Table 1 lists the parameters determined for the 

spherical motor [7] where the stator poles and air 
bearings are both located following the pattern of an 
Icosahedron. Table 2 tabulates the location of the air 
bearing on a unit sphere. 

Table 1 Parameters used in simulation 
Parameters 
Mass m,, 0.2kg 
Outer radius R b  12.7mm mm 
RdRp 16 
Supply pressure, p s  420 kN/m2 
Pressure ratio, ppe/ps 0.92 
Pocket depth, dp 19.3pm 
Orific diameter 0.22 5 mm 
Nominal h 69pm 

Table 2: Icosahedron Vertices 
Bearing X Y Z 
C I  

c7 
C? 

CS 

CA 

0.89442 0 0.4472 1 
0.27639 0.85065 0.44721 
-0.72361 0.52573 0.44721 
-0.72361 -0.52573 0.44721 
0.27639 -0.85065 0.44721 

C6 -0.89443 0 -0.4472 1 
C7 -0.27639 -0.85065 -0.44721 
CR 0.72360 -0.52573 -0.44721 
c9 0.72360 0.52573 -0.44721 
C l n  -0.27639 0.85065 -0.4472 1 

The air bearing system is simulated using MATLAB for 
the three degrees-of-freedom rotor translations. The 
configuration uses five pairs of bearings located on ten of 
the stator poles without the top and bottom vertices of the 

Icosahedron. In practical applications, the air bearing 
system is subjected to an orientation and translation 
dependent magnetic force trajectory during operation. 
The system must react to null out the effect of the 
radial component of the force. We simulate the 
unknown time dependent force by injecting a force 
function to the air bearing system dynamics. The 
force function is given in Figure 6. 

X-External Force Tqector). 
1 4 8 . .  . . . . . . , I 

Time (sec) 

Y-External Force Trajectory 
4 . . .  , , . . . .  

n 
2 

s 
9 ,  

LZ 

0 

1 

-21" " "  " " 
0 1 2 3 4 5 6 7 6 9  

Time (sec) 

Z-External Force Trajectory 

I 

30 c 

0 1 2  3 4 5 6 7 8 9 10 
-30' " " ' " " ' 

Time (sec) 

Figure 6 External Force Trajectory 

The simulation results are plotted in Figure 7. The 
results indicate that the magnetic disturbance is 
adequately compensated by the air-bearing system 
since the force has little impact on the air bearing 
dynamics. 

81 7 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 15:23 from IEEE Xplore.  Restrictions apply. 



x IO* Slmulanon 10 beanngs + force trajectow 

-6 

101 ii 

i! - 

- a - i  j 

I i  - 1  
I 

i 
1 

I 

I 

I 
0 0005 0 0 1  0015 0 0 2  0025 003 

-12 I 

15 

10 

c 
E 

f 
0 

: o  
Y 

-5 

-10 

Time (sec) 

SimulaQon 10 beanngs + force trajectory 

xddot 
yddot 
zddot 

r )  

I \  

\: ,i 
4 

0005 001 0015 0 0 2  0025 003 
Time (sec) 

Figure 7: Simulated Rotor Motion 

rotor translations. The forward and inverse kinematics 
between the rotor displacement and the individual air gaps 
at positions round the stator are developed in closed-forms, 
which are essential for design, dynamic simulation and 
control purposes. Along with the pressure-flow relationship 
as a function of the rotor position, the paper presents a 
detailed dynamic model of the air bearing system. The 
dynamic performance of the air bearing system has been 
evaluated analytically by simulation. 

REFERENCES 
[l] Lee, K-M., Vachtsevanos, G., Kwan, C-K., 

“Development of a Spherical Stepper Wrist 
Motor”, IEEE International Conference on 
Robotics & Automation, 1988. 

[2] Zhou, Z., “Real-Time Control and Optimization of a 
Variable Reluctance Spherical Motor”, Ph.D. Thesis, 
Mechanical Engineering, Georgia Tech., 1995. 

[3] Slocum A. H., “Precision Machine Design”, Prentice- 
Hall Englewood Cliffs, NJ, 1992. 

[4] Licht, L., Fuller, D. D., Stemlicht, B., “Self-Excited 
Vibrations of an Air-Lubricated Thrust Bearing”, 
Transactions of ASME, Vol. 80, 1958, pp.411-414. 

[5] Licht, L., Elrod, H., “A Study of the Stability of 
Externally Pressurized Gas Bearings”, ASME 
Journal of Applied Mechanics, Vol. 82, 1960, pp. 

[6] Ezenekwe, D. E.; “Design Methodology of an Air 
Bearing System for Multi-DOF Spherical Actuator 
Motion Control Applications”, Ph.D. Thesis, 
Mechanical Engineering, Georgia Tech., Dec., 1998. 

“Dynamic 
Modeling And Control Of A Ball-Joint-Like 
Variable Reluctance Spherical Motor,” ASME 
Journal Of Dynamics Systems, Measurements, And 
Control, Vol. 118, No. 1, March 1996, pp.29-40. 

[8] Wilcock, D. F., “MTI Gas Bearing Design Manual”, 
Mechanical Technology Inc., Latham, NY, 1972. 

[9]Mori, H., Mori, A. Kaneko, R., Yoshida, K., 
“Stability Element for External Pressurized Gas 
Bearing (2nd Report, Stabilizing Element Inserted 
into the Gas Supply Line)”, Transactions of 

[10]0hsumi, T., Ikeuchi, K., Mori, H., Haruyama, H. J., 
Matsumoto, Y., “Characteristics of a Hydrostatic 
Bearing with a Controlled Compensating Element”, 
Wear, Vol. 105, April, 1991, pp. 177-194. 

250-25 8. 

[7] Lee, K.-M., Roth, R., and Zhou, Z., 

JSME, Vol. 32, NO. 244, 1966, pp. 1883-2064. 

6. CONCLUSIONS 
We have presented the modeling, design control of a 

practical air bearing system for a VR spherical motor. The 
design uses strategic placement of bearings at the vertices 
of polyhedrons and external pressurized air to regulate the 

81 8 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 15:23 from IEEE Xplore.  Restrictions apply. 


